Средства автоматизации производственных процессов. Автоматизация технологических процессов. Конструктивные принципы построения пьезодатчиков

Автоматизация производственных процессов – основное направление, по которому в настоящее время продвигается производство во всем мире. Все, что раньше выполнялось самим человеком, его функции, не только физические, но и интеллектуальные, постепенно переходят к технике, которая сама выполняет технологические циклы и осуществляет контроль за ними. Вот такое теперь генеральное русло современных технологий. Роль человека во многих отраслях уже сводится лишь к контролеру за автоматическим контролером.

В общем случае под понятием «управление технологическим процессом» понимают совокупность операций, необходимых для пуска, остановки процесса, а также поддержания или изменения в требуемом направлении физических величин (показателей процесса). Осуществляющие технологические процессы отдельные машины, агрегаты, аппараты, устройства, комплексы машин и аппаратов, которыми необходимо управлять, в автоматике называют объектами управления или управляемыми объектами. Управляемые объекты весьма разнообразны по своему назначению.

Автоматизация технологических процессов – замена физического труда человека, затрачиваемого на управление механизмами и машинами, работой специальных устройств, обеспечивающих это управление (регулирование различных параметров, получение заданной производительности и качества продукта без вмешательства человека).

Автоматизация производственных процессов позволяет во много раз увеличивать производительность труда, повышать его безопасность, экологичность, улучшать качество продукции и более рационально использовать производственные ресурсы, в том числе, и человеческий потенциал.

Любой технологический процесс создается и осуществляется для получения конкретной цели. Изготовления конечной продукции, или же для получения промежуточного результата. Так целью автоматизированного производства может быть сортировка, транспортировка, упаковка изделия. Автоматизация производства может быть полной, комплексной и частичной.


Частичная автоматизация имеет место, когда в автоматическом режиме осуществляется одна операция или отдельный цикл производства. При этом допускается ограниченное участие в нем человека. Чаще всего частичная автоматизация имеет место, когда процесс протекает слишком быстро для того, чтобы сам человек мог в нем полноценно участвовать, при этом достаточно примитивные механические устройства, приводящиеся в движение при помощи электрического оборудования, отлично с ним справляются.

Частичная автоматизация, как правило, применяется на уже действующем оборудовании, является дополнением к нему. Однако, наибольшую эффективность оно показывает, когда включено в общую систему автоматизации изначально - сразу же разрабатывается, изготовляется и устанавливается как ее составная часть.

Комплексная автоматизация должна охватывать отдельный крупный участок производства, это может быть отдельный цех, электростанция. В этом случае все производство действует в режиме единого взаимосвязанного автоматизированного комплекса. Комплексная автоматизация производственных процессов целесообразна не всегда. Ее область применения – современное высокоразвитое производство, на котором используется чрезвычайно надежное оборудование.

Поломка одного из станков или агрегата тут же останавливает весь производственный цикл. Такое производство должно обладать саморегуляцией и самоорганизацией, которая осуществляется по предварительно созданной программе. При этом человек принимает участие в производственном процессе лишь в качестве постоянного контролера, отслеживающего состояние всей системы и отдельных ее частей, вмешивается в производство для пуска-запуска и при возникновении внештатных ситуаций, или при угрозе такого возникновения.


Наивысшая ступень автоматизации производственных процессов – полная автоматизация . При ней сама система осуществляет не только процесс производства, но и полный контроль над ним, который проводят автоматические системы управления. Полная автоматизация целесообразна на рентабельном, устойчивом производстве с устоявшимися технологическими процессами с неизменным режимом работы.

Все возможные отклонения от нормы должны быть предварительно предусмотрены, и разработаны системы защиты от них. Также полная автоматизация необходима для работ, которые могут угрожать жизни человека, его здоровью или же проводятся в недоступных для него местах – под водой, в агрессивной среде, в космосе.

Каждая система состоит из компонентов, которые выполняют определенные функции. В автоматизированной системе датчики снимают показания и передают для принятия решения по управлению системой, команду выполняет уже привод. Чаще всего это электрическое оборудование, так как именно при помощи электрического тока целесообразнее выполнять команды.


Следует разделять автоматизированные систему управления и автоматические. При автоматизированной системе управления датчики передают показания на пульт оператору, а он уже, приняв решение, передает команду исполнительному оборудованию. При автоматической системе – сигнал анализируется уже электронными устройствами, они же, приняв решение, дают команду устройствам-исполнителям.

Участие человека в автоматических системах все же необходимо, пусть и в качестве контролера. Он имеет возможность вмешаться в технологический процесс в любой момент, откорректировать его или же остановить.

Так, может выйти из строя датчик температуры и подавать неправильные показания. Электроника в таком случае, будет воспринимать его данные, как достоверные, не подвергая их сомнению.

Человеческий разум во много раз превосходит возможности электронных устройств, хотя по быстроте реагирования уступает им. Оператор, может понять, что датчик неисправен, оценить риски, и просто отключить его, не прерывая процесс. При этом он должен быть полностью уверен в том, что это не приведет к аварии. Принять решение ему помогает опыт и интуиция, недоступные машинам.

Такое точечное вмешательство в автоматические системы не несет с собой серьезных рисков, если решение принимает профессионал. Однако, отключение всей автоматики и перевод системы в режим ручного управления чреват серьезными последствиями из-за того, что человек не может быстро реагировать на изменение обстановки.

Классический пример – авария на Чернобыльской атомной электростанции, ставшая самой масштабной техногенной катастрофой прошлого века. Она произошла именно из-за отключения автоматического режима, когда уже разработанные программы по предотвращению аварийных ситуаций не могли влиять на развитие обстановки в реакторе станции.

Автоматизация отдельных процессов началась в промышленности еще в девятнадцатом веке. Достаточно вспомнить автоматический центробежный регулятор для паровых машин конструкции Уатта. Но лишь с началом промышленного использования электричества стала возможной более широкая автоматизация уже не отдельных процессов, а целых технологических циклов. Связано это с тем, что до этого механическое усилие на станки передавалось с помощью трансмиссий и приводов.

Централизованное производство электроэнергии и использование ее в промышленности по большому счету, началось лишь с двадцатого века - перед Первой мировой войной, когда каждый станок был оснащен собственным электродвигателем. Именно это обстоятельство дало возможность механизировать не только сам производственный процесс на станке, но механизировать и его управление. Это был первый шаг к созданию станков-автоматов . Первые образцы которых появились уже в начале 1930-х годов. Тогда и возник сам термин «автоматизированное производство».

В России – тогда еще в СССР, первые шаги в этом направлении были сделаны в 30-40-е годы прошлого века. Впервые автоматические станки были использованы в производстве деталей для подшипников. Затем появилось первое в мире полностью автоматизированное производство поршней для тракторных двигателей.

Технологические циклы соединились в единый автоматизированный процесс, начинавшийся с загрузки сырья и заканчивающийся упаковкой готовых деталей. Это стало возможно, благодаря широкому применению современного на то время электрооборудования, различных реле, дистанционных выключателей, и конечно же, приводов.

И только появление первых электронно-вычислительных машин позволило выйти на новый уровень автоматизации. Теперь уже технологический процесс перестал рассматриваться, как просто совокупность отдельных операций, которые нужно совершать в определенной последовательности для получения результата. Теперь весь процесс стал единым целым.

В настоящее время автоматические системы управления не только ведут производственный процесс, но также контролируют его, отслеживают возникновение внештатных и аварийных ситуаций. Они запускают и останавливают технологическое оборудование, отслеживают перегрузки, отрабатывают действия в случае аварий.

В последнее время автоматические системы управления позволяют достаточно легко перестраивать оборудование на производство новой продукции. Это уже целая система, состоящая из отдельных автоматических многорежимных систем, соединенных с центральным компьютером, который увязывает их в единую сеть, и выдает задания для исполнения.

Каждая подсистема является отдельным компьютером со своим программным обеспечением, предназначенным для выполнения собственных задач. Это уже гибкие производственные модули. Гибкими их называют потому, что их можно перенастроить на другие технологические процессы и тем самым расширять производство, версифицировать его.

Вершиной автоматизированного производства являются . Автоматизация пронизало производство сверху донизу. Автоматически работают транспортная линия по доставке сырья для производства. Автоматизировано управление и проектирование. Человеческий опыт и интеллект используется лишь там, где его не может заменить электроника.

Представляет собой процедуру, в рамках которой функции контроля и управления, выполнявшиеся человеком, передаются приборам и устройствам. За счет этого существенно повышается результативность труда и качество продукции. Кроме этого, обеспечивается сокращение доли рабочих, привлеченных к разным промышленным сферам. Рассмотрим далее, что собой представляют автоматика и автоматизация производственных процессов.

Историческая справка

Самостоятельно функционирующие приборы - прообразы современных автоматических системы - стали появляться еще в древности. Однако до самого 18 столетия была широко распространена кустарная и полукустарная деятельность. В этой связи такие "самодействующие" устройства не получили практического применения. В конце 18-го - начале 19-го вв. произошел резкий скачок объемов и уровня производства. Промышленная революция создала предпосылки для усовершенствования приемов и орудий труда, приспособления оборудования для замены человека.

Механизация и автоматизация производственных процессов

Изменения, которые вызвала коснулись в первую очередь дерево- и металлообработки, прядильных, ткацких заводов и фабрик. Механизация и автоматизация активно изучались К. Марксом. Он видел в них принципиально новые направления прогресса. Он указывал на переход от использования отдельных станков к автоматизации их комплекса. Маркс говорил о том, что за человеком должны закрепляться сознательные функции контроля и управления. Работник становится рядом с производственным процессом и регулирует его. Главными достижениями того времени стали изобретения русского ученого Ползунова и английского новатора Уатта. Первый создал автоматический регулятор для питания парового котла, а второй - центробежный контроллер скорости паровой машины. Достаточно продолжительное время оставалась ручной. До внедрения автоматизации замена физического труда осуществлялась посредством механизации вспомогательных и основных процессов.

Ситуация сегодня

На современном этапе развития человечества системы автоматизации производственных процессов основываются на использовании компьютеров и различного программного обеспечения. Они способствуют сокращению степени участия людей в деятельности или полностью исключают его. В задачи автоматизации производственных процессов входит повышение качества выполнения операций, сокращение времени, которое на них требуется, снижение стоимости, увеличение точности и стабильности действий.

Основные принципы

Сегодня средства автоматизации производственных процессов внедрены во многие сферы промышленности. Независимо от сферы и объема деятельности компаний, практически в каждой из них используются программные устройства. Существуют различные уровни автоматизации производственных процессов. Однако для любого из них действуют единые принципы. Они обеспечивают условия для эффективного выполнения операций и формулируют общие правила управления ими. К принципам, в соответствии с которыми осуществляется автоматизация производственных процессов, относят:

  1. Согласованность. Все действия в рамках операции должны сочетаться друг с другом, идти в определенной последовательности. В случае рассогласованности вероятно нарушение хода процесса.
  2. Интеграция. Автоматизируемая операция должна вписываться в общую среду предприятия. На той или иной стадии интеграция осуществляется по-разному, однако суть этого принципа неизменна. Автоматизация производственных процессов на предприятиях должна обеспечивать взаимодействие операции с внешней средой.
  3. Независимость исполнения. Автоматизируемая операция должна осуществляться самостоятельно. Участие человека в ней не предусматривается, или оно должно быть минимально (только контроль). Работник не должен вмешиваться в операцию, если она осуществляется согласно установленным требованиям.

Указанные принципы конкретизируются в соответствии с уровнем автоматизации того или иного процесса. Для операций устанавливаются дополнительные пропорциональности, специализации и так далее.

Уровни автоматизации

Их принято классифицировать в соответствии с характером управления компании. Оно, в свою очередь, может быть:

  1. Стратегическим.
  2. Тактическим.
  3. Оперативным.

Соответственно, существует:

  1. Нижний уровень автоматизации (исполнительский). Здесь управление касается регулярно совершаемых операций. Автоматизация производственных процессов ориентирована на исполнение оперативных функций, поддержание установленных параметров, сохранение заданных режимов работы.
  2. Тактический уровень. Здесь обеспечивается распределение функций между операциями. В качестве примеров можно привести планирование производства или обслуживания, управление документами или ресурсами и так далее.
  3. Стратегический уровень. На нем осуществляется управление всей компанией. Автоматизация производственных процессов стратегического назначения обеспечивает решение прогнозных и аналитических вопросов. Она необходима для поддержания деятельности высшего административного звена. Этот уровень автоматизации обеспечивает стратегическое и финансово-хозяйственное управление.

Классификация

Автоматизация обеспечивается за счет использования разнообразных систем (OLAP, CRM, ERP и пр.). Все они разделяются на три основных типа:

  1. Неизменяемые. В этих системах последовательность действий устанавливается в соответствии с конфигурацией оборудования либо условиями процесса. Она не может изменяться в ходе операции.
  2. Программируемые. В них возможно изменение последовательности в зависимости от конфигурации процесса и заданной программы. Выбор той или иной цепочки действий осуществляется посредством специального набора инструментов. Они читаются и интерпретируются системой.
  3. Самонастраиваемые (гибкие). Такие системы могут осуществлять выбор нужных действий по ходу работы. Изменения конфигурации операции происходит в соответствии с информацией о течении операции.

Все эти типы могут использоваться на всех уровнях отдельно либо в комплексе.

Виды операций

В каждой экономической отрасли присутствуют организации, выпускающие продукцию или предоставляющие услуги. Их можно разделить на три категории в соответствии с "удаленностью" в цепи переработки ресурсов:

  1. Добывающие или производящие - сельскохозяйственные, нефтегазодобывающие предприятия, например.
  2. Перерабатывающие природное сырье организации. При изготовлении продукции они используют материалы добытые или созданные компаниями из первой категории. К ним, например, относятся предприятия электронной, автомобильной промышленности, электростанции и так далее.
  3. Обслуживающие компании. Среди них - банки, медицинские, образовательные учреждения, предприятия общепита и пр.

Для каждой группы можно выделить операции, связанные с предоставлением услуг или выпуском продукции. К ним относят процессы:

  1. Управления. Эти процессы обеспечивают взаимодействие внутри предприятия и способствуют формированию отношений компании с заинтересованными участниками оборота. К последним, в частности, относят надзорные органы, поставщиков, потребителей. В группу бизнес-процессов входят, например, маркетинг и продажи, взаимодействие с покупателями, финансовое, кадровое, материальное планирование и так далее.
  2. Анализа и контроля. Эта категория связана со сбором и обобщением сведений о выполнении операций. В частности, к таким процессам относят операционное управление, контроль качества, оценку запасов и пр.
  3. Проектирования и разработки. Эти операции связаны со сбором и подготовкой исходных сведений, реализацией проекта, контролем и анализом результатов.
  4. Производства. Эта группа включает в себя операции, связанные с непосредственным выпуском продукции. К ним относят, в том числе, планирование потребности и мощности, логистику, обслуживание.

Большая часть этих процессов сегодня автоматизирована.

Стратегия

Необходимо отметить, что автоматизация производственных процессов отличается сложностью и трудоемкостью. Для достижения поставленных целей необходимо руководствоваться определенной стратегией. Она способствует улучшению качества выполняемых операций и получению от деятельности желаемые результаты. Особое значение сегодня имеет грамотная автоматизация производственных процессов в машиностроении. Стратегический план можно коротко представить следующим образом:


Преимущества

Механизация и автоматизация различных процессов позволяет значительно повысить качество товаров и управления производством. Среди прочих преимуществ следует назвать:

  1. Увеличение скорости выполнения повторяющихся операций. За счет снижения степени участия человека одни и те же действия могут осуществляться быстрее. Автоматизированные системы обеспечивают большую точность и сохраняют работоспособность вне зависимости от продолжительности смены.
  2. Повышение качества работы. При снижении степени участия людей уменьшается или исключается влияние человеческого фактора. Это существенно ограничивает вариации выполнения операций, что, в свою очередь, предотвращает множество ошибок и повышает качество и стабильность работы.
  3. Увеличение точности управления. Использование информационных технологий позволяет сохранять и учитывать в дальнейшем больший объем сведений об операции, чем при ручном контроле.
  4. Ускоренное принятие решений при типовых ситуациях. Это способствует улучшению характеристик операции и предотвращает несоответствия на следующих этапах.
  5. Параллельность выполнения действий. дают возможность осуществлять несколько операций в одно время без ущерба для точности и качества работы. Это ускоряет деятельность и улучшает качество результатов.

Недостатки

Несмотря на очевидные преимущества, автоматизация может быть далеко не всегда целесообразной. Именно поэтому перед ее осуществлением необходим всесторонний анализ и оптимизация. После этого может сложиться так, что автоматизация не потребуется или будет невыгодна в экономическом смысле. Ручное управление и выполнение процессов может стать более предпочтительным в следующих случаях:

Заключение

Механизация и автоматизация, несомненно, имеют огромное значение для производственной сферы. В современном мире все меньше операций выполняется вручную. Однако и сегодня в ряде отраслей не обойтись без такого труда. Автоматизация особенно эффективна на крупных предприятиях, где выпускается продукция для массового потребителя. Так, например, на автомобильных заводах в операциях участвует минимальное количество людей. При этом они, как правило, осуществляют контроль за ходом процесса, не участвую в нем непосредственно. Модернизация промышленности в настоящее время идет очень активно. Автоматизация производственных процессов и производств считается сегодня наиболее эффективным способом повышения качества продукции и увеличения объема ее выпуска.

Этапы и средства автоматизации производства

Предшественником автоматизации явилась комплексная механизация производства, в процессе которой физические функции человека в производственном процессе выполнялись с помощью механизмов с ручным управлением. Труд человека при этом облегчался физически, и его основной деятельностью становилось управление механизмами. Механизация направлена на облегчение условий человеческого труда и повышение его производительности.

По мере развития механизации возникает задача полной или частичной автоматизации управления механизмами. В результате решения этой задачи создаются технологические автоматы, способные в большей или меньшей степени выполнять производственные функции без участия человека. Возникновение и распространение технологических автоматов положило начало автоматизации производства.

В развитии автоматизации можно выделить ряд последовательных этапов, каждый из которых характеризуется появлением новых средств автоматизации и расширением состава объектов автоматизации производства. Укрупненно, применительно к промышленному производству, можно выделить следующие основные этапы автоматизации.

1. Автоматизация массового производства. При массовом производстве промышленной продукции задача повышения производительности труда стоит особенно остро. Здесь возможны значительные затраты на средства автоматизации, поскольку будучи отнесенными к единице продукции (при большом числе единиц продукции), они приводят к приемлемому росту ее цены.

В результате становится целесообразным создание и использование в производстве специализированных и специальных технологических автоматов. Каждый такой автомат рассчитан на единственную технологическую операцию или ограниченный набор технологических операций при производстве определенного изделия. Задача перестройки автомата на выпуск других изделий либо ставится в ограниченном объеме, либо не ставится вовсе.

Основной целью автоматизации является получение максимальной производительности. Технологический процесс изготовления изделия разбивается на простые операции малой длительности, которые можно выполнять параллельно на разных технологических автоматах.

Из технологических автоматов создаются поточные линии в соответствии с последовательностью технологических операций процесса изготовления изделия. Дальнейшее повышение уровня автоматизации достигается путем автоматизации межоперационного транспорта и промежуточного складирования (межоперационные накопители полуфабрикатов). Результатом такой комплексной автоматизации технологического процесса является создание автоматических линий.

Автоматическая линия реализует в автоматическом режиме технологический процесс изготовления определенного изделия. Автоматическая линия для достижения наивысшей производительности строится из специального и специализированного оборудования. Создание и внедрение автоматической линии требует больших временных и материальных затрат, следовательно, такие линии экономически эффективны только при массовом производстве изделий, когда одно и то же изделие в неизменном виде выпускается непрерывно в больших количествах в течение рядя лет. Автоматические линии имеют ограниченные возможности для переналадки на изготовление иной продукции или такие возможности вообще не предусматриваются.

Поскольку использование автоматических линий и цикловых технологических автоматов ограничено массовым и крупносерийным производством, то соответственно ограничены объемы автоматизированного производства на их основе. По разным оценкам объем массового и крупносерийного производства составляет от 15 до 20 % общего объема производства и эта доля имеет тенденцию к сокращению. Следовательно, уровень автоматизации производства с помощью автоматических линий и цикловых автоматов может составить не более 15–20 %. Реально этот уровень еще меньше.

Цикловые технологические автоматы и автоматические линии относятся к средствам "жесткой" автоматизации. С их помощью можно достичь весьма высокой производительности труда, однако область использования таких средств ограничена, и только на их основе полная автоматизация производства невозможна.

2. Автоматизация основных операций обработки многономенклатурного производства. Многономенклатурное производство предполагает изготовление разнообразных изделий партиями ограниченного объема в ограниченные сроки. Номенклатура изделий и объемы партий могут колебаться в широких пределах: от единичных изделий до партий среднесерийного производства.

При многономенклатурном производстве технологическое оборудование должно быть в значительной степени универсальным и обеспечивать переналадку и перестройку на изготовление разнообразных изделий (в пределах технологических возможностей оборудования). В случае автоматизированного производства такая переналадка и перестройка должны осуществляться в автоматизированном режиме с минимальным объемом ручных операций или с полным их исключением.

Выполнение перечисленных условий определяет "гибкую" автоматизацию. Основным принципом гибкой автоматизации является принцип программного управления технологическим оборудованием. Рабочий цикл технологического автомата при этом задается управляющей программой, содержащей кодированное описание последовательности элементов цикла с использованием определенной символики. Управляющая программа разрабатывается обособленно от управляемого оборудования и оформляется на некотором машинном носителе, что позволяет считывать ее автоматическому устройству управления технологического автомата.

Впервые этот принцип (который возник и усовершенствовался при управлении ЭВМ) был реализован для автоматизации металлорежущих станков. Появились и начали широко распространяться станки с числовым программным управлением (ЧПУ). Первые модели станков с ЧПУ из-за недостаточного совершенства требовали при изменении рабочего цикла не только замены управляющей программы, но и некоторых ручных операций для переналадки. Такие станки оказывались эффективными при обработке партий однотипных деталей объемом не менее 50–100 шт. По мере совершенствования принципов ЧПУ и технических решений этот предел постоянно снижался, и в настоящее время станки с ЧПУ эффективны даже в индивидуальном производстве.

Вначале были созданы станки с ЧПУ для определенных видов механической обработки. В последующем получили распространение многооперационные станки с ЧПУ с автоматической сменой обрабатывающего инструмента (обрабатывающие центры).



Станки с ЧПУ позволяют автоматизировать процесс обработки деталей и обладают гибкостью, поскольку способны перестраиваться на обработку деталей иной формы путем замены управляющей программы. Это обстоятельство позволяет, например, автоматизировать процесс переналадки станка и, следовательно, повышает уровень автоматизации производства.

Принцип ЧПУ, ввиду эффективности, получил распространение и для другого технологического оборудования, что позволило обеспечить гибкую автоматизацию разнообразных технологических операций. Оборудование с ЧПУ в первую очередь получило распространение в машиностроении, приборостроении и металлообработке. Однако его использование не ограничено перечисленными отраслями.

Основным недостатком оборудования с ЧПУ является отсутствие автоматизации вспомогательных операций и необходимость в ручном обслуживании оборудования. Названное обстоятельство приводит к снижению коэффициента использования оборудования до уровня 40–60 %.

3. Промышленная робототехника. Автоматизация основных операций технологических процессов привела к росту противоречия между уровнем их автоматизации и уровнем автоматизации вспомогательных операций (в первую очередь операций загрузки-разгрузки автоматизированного оборудования). В качестве средства устранения этого противоречия была предложена концепция программно-управляемого перестраиваемого автомата для выполнения вспомогательных операций по обслуживанию автоматизированного оборудования.

Такие автоматы появились в шестидесятых годах прошлого столетия и получили название промышленных роботов (ПР). Первые разработки промышленных роботов были ориентированы на замену человека при выполнении операций загрузки заготовок в технологические автоматы и разгрузки обработанных изделий. На базе технологического автомата и обслуживающего его робота создаются роботизированные технологические комплексы (РТК), представляющие собой комплексно автоматизированные технологические ячейки.

С помощью РТК появляется возможность комплексной автоматизации отдельных технологических операций или ограниченного набора технологических операций в многономенклатурном производстве. Первые РТК с использованием простых ПР с цикловым управлением были эффективны в среднесерийном производстве. По мере совершенствования ПР (роботы с ЧПУ, адаптивные роботы, интеллектуальные роботы), повышается их гибкость и возможность эффективного применения в мелкосерийном и индивидуальном производстве.

Промышленные роботы постоянно совершенствуются. В процессе совершенствования улучшаются технические характеристики роботов, расширяются их функциональные возможности, расширяется сфера применения. В настоящее время основная масса выпускаемых ПР ориентирована на выполнение технологических операций: сварка, окраска, сборка и некоторые другие основные технологические операции. Наряду с такими роботами продолжают использоваться загрузочно-разгрузочные роботы, появились транспортные роботы и др.

4. Автоматизация управления. Управление в любом производстве требует решения большого объема задач по сбору и обработке информации, принятию решений и контролю их исполнения. Для решения задач управления привлекаются значительные людские ресурсы. Качество решения управленческих задач в существенной мере определяет результат производства.

Возможность автоматизации управления появилась с развитием и широким распространением ЭВМ, когда ЭВМ стали доступны для использования отдельными предприятиями. Появилась возможность автоматизации (с помощью ЭВМ и соответствующего программного обеспечения) процессов сбора и обработки информации, необходимой для принятия управленческих решений и контроля хода производства. С использованием ЭВМ стали решаться задачи планирования производства, задачи материального обеспечения, задачи учета труда и заработной платы, а также ряд других задач управления производством.

Решение таких задач не было жестко привязано во времени к производственным процессам и могло осуществляться в "машинном" времени ЭВМ, т.е. в течение такого временного периода, который требуется для выполнения соответствующей программы ЭВМ. Характерным для этого этапа автоматизации явилось создание на производстве централизованных вычислительных центров для решения задач управления. Связь между ЭВМ и производством, в основном, осуществлялась с использованием оперативного персонала.

Подобные централизованные системы получили название автоматизированных систем управления производством (АСУП). АСУП обеспечивает решение задач организационного и диспетчерского управления производством. Основной эффект от внедрения АСУП заключается в сокращении времени, необходимого для принятия управленческих решений, повышении оперативности управления и его качества, а также в сокращении управленческого персонала, занятого рутинной обработкой информации.

Значительный объем управления в производстве приходится на задачи оперативно-технического управления производственным оборудованием и технологическими процессами. Для автоматизации решения этих задач необходимо обеспечить непосредственную связь между управляющей ЭВМ и объектами управления. Кроме того, задачи оперативно-технического управления должны решаться в реальном времени управляемого процесса.

Поэтому наряду с АСУП появились системы автоматизированного управления технологическими процессами (АСУ ТП), которые обеспечивают в автоматизированном режиме решение задач оперативно-технического, диспетчерского и организационного управления отдельными технологическими процессами производства. Интеграция АСУ ТП с автоматизированным технологическим комплексом обеспечивает реализацию концепции безлюдной технологии в производстве.

5. Автоматизация инженерного труда. Производство требует затрат высококвалифицированного труда специалистов – инженеров. Инженеры разрабатывают новую продукцию, проводят научные исследования и испытания, разрабатывают новые технологические процессы и модернизируют старые. Без инженерного труда невозможен прогресс производства. Затраты на оплату инженерного труда в производственных расходах составляют значительную долю (по стандартам промышленно развитых стран).

Стремление повысить эффективность инженерного труда, сократить материальные и временные затраты на проектирование новой или модернизированной продукции, на проведение исследований, на подготовку производства привело к появлению соответствующих автоматизированных систем. Основой таких систем явилось использование ЭВМ, поскольку инженерный труд – интеллектуальный труд. Типичные инженерные задачи являются эвристическими задачами, опирающимися на значительный объем рутинных работ.

Рутинные работы (получение справочной информации, оформление результатов, оформление чертежей и текстовых документов и др.) в большинстве случаев поддаются алгоритмизации (описанию в виде детерминированной последовательности простых операций) и, следовательно, их можно автоматизировать, используя ЭВМ. В принципе, автоматизировать можно любые процессы, поддающиеся алгоритмизации.

Средством автоматизации инженерного труда являются програм-мно-технические комплексы на базе ЭВМ: системы автоматизации проектирования (САПР), автоматизированные системы научных исследований (АСНИ), автоматизированные системы технологической подготовки производства (АСТПП). Первые две системы используются конструкторами и исследователями для разработки новой или модернизации существующей продукции. Результатом их работы являются технические и рабочие проекты новой продукции.

Для реализации этих проектов необходимо выполнить подготовку производства спроектированной продукции. Эта задача возлагается на специалистов-технологов, осуществляющих проектирование новых технологических процессов или модернизацию существующих. Для автоматизации труда технологов (тех работ, которые поддаются алгоритмизации) предназначены АСТПП. Использование АСТПП позволяет повысить эффективность подготовки производства, сократить материальные и временные затраты на этот процесс, повысить качество результатов и сократить затраты человеческого труда.

6. Интеграция автоматизированных производственных систем в единое гибкое автоматизированное производство (ГАП). Интеграция заключается в совместном использовании и взаимодействии перечисленных выше систем автоматизации для достижения конечной цели производства. При этом системы автоматизации интеллектуальных функций человека (проектирование, управление, исследования, разработка технологий) используют общие базы данных, что обеспечивает прямой обмен информацией между ними.

В ГАП основным принципом управления оборудованием и процессами является программное управление от ЭВМ, что обеспечивает перестройку производства на выпуск новой или модернизированной продукции программным путем (заменой управляющих программ) в автоматизированном режиме. В результате производство приобретает свойство гибкости и реализует концепцию гибкой технологии. Комплексная автоматизация человеческого труда позволяет сократить долю человеческого труда в ГАП в 20 раз по сравнению с традиционным производством. Такое производство реализует концепцию безлюдной технологии.

В условиях ГАП автоматизированы как физические, так и интеллектуальные функции человека. Для автоматизации интеллектуальных функций основным средством являются ЭВМ. Поэтому ГАП часто называют интегрированным и компьютеризированным производством.

Cтраница 1


Автоматизированные производственные процессы - это такие процессы, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспомогательные - - полностью или частично. Функции рабочего сводятся к наблюдению и контролю за работой машин-автоматов, загрузке сырья и выгрузке готовой продукции.  

Комплексно автоматизированный производственный процесс описывается следующими уравнениями.  

Под автоматизированными производственными процессами понимаются такие, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспо - могательные - полностью или частично.  

Под автоматизированными производственными процессами понимают такие, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспомогательные - полностью или частично. Функции рабочего сводятся к наблюдению и контролю за работой машин-автоматов, загрузке сырья и выгрузке готовых изделий.  

Под автоматизированными производственными процессами понимаются такие, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспомогательные - полностью или частично. Функции рабочего сводятся к наблюдению и контролю за работой машин-автоматов, загрузке сырья и выгрузке готовой продукции.  

Такой подход к автоматизированным производственным процессам имеет много преимуществ. Тот факт, что они обходятся дешево и окупаются быстро, позволяет с большой легкостью протолкнуть их у высшего начальства. Одним из наиболее разительных управленческих аргументов против внедрения крупных автоматических установок является то, что спрос на товар может измениться прежде, чем проектируемая для него автоматическая установка будет пущена в ход.  

Важнейшим, этапом создания автоматизированного производственного процесса является выбор наиболее целесообразного варианта технологического процесса.  

Оптимальные технологические варианты изготовления готовой продукции должны служить основой автоматизированного производственного процесса. Наименование Технология машиностроения в данное время неправильно приписывается существующим курсам и учебным специальностям, представляющим собою, по существу, обработку резанием.  

На современных промышленных предприятиях, в металлургических, химических, нефтеобрабатывающих и других отраслях с автоматизированными производственными процессами измерительная техника используется главным образом для контроля производственных процессов (их параметров), сочетаемого с автоматическим регулированием и управлением, и контроля качества выпускаемой продукции. Хотя контроль производственного процесса, осуществляемый через те или иные его параметры, преследует иную цель чем измерение отдельных величин, а именно-проверку степени (в установленных пределах) выполнения заданных режимов (параметров), тем не менее процесс контроля имеет много общего с измерением как в методике, так и в аппаратуре. Примером могут служить измерительные преобразователи, которые преобразуют всевозможные неэлектрические величины в электрические и широко применяются как при измерениях, так и при контроле. Кроме того, в устройствах, применяемых для контроля, в ряде случаев осуществляют именно измерения, если, например, требуется знать числовые значения контролируемого параметра и его изменения во времени.  


Во многих случаях при проведении различного рода научных экспериментальных исследований, испытании новых образцов техники, а также при контроле автоматизированных производственных процессов применяется документальная регистрация значений во времени контролируемых неэлектрических величин. В этих случаях вместо индикаторного прибора используется устройство регистрирующее (записывающее) поступающие на его вход электрические сигналы. Наиболее широко используются магнитная и осциллографическая записи электрических сигналов.  

Так как в автоматизации заложены возможности повышения технико-экономических показателей, то при разработке алгоритма управления нужно стремиться к тому, чтобы автоматизированный производственный процесс, протекал оптимально. Это значит, что при прочих равных условиях производительность оборудования должна быть максимальной, качество получаемых продуктов высоким, энергетические затраты минимальными и, как следствие этого, себестоимость готовой продукции невысокой.  

Каждый агрегат должен по возможности иметь наименьшие габариты, массу и стоимость; конструкция преобразователя должна быть технологична, допускать применение автоматизированных производственных процессов при его изготовлении и обеспечивать благоприятные условия для эксплуатации.  

Прежде, когда производственные процессы не были автоматизированы, и технология в значительной мере базировалась на опыте и навыках людей, когда средства измерительной техники не были столь развиты, как сейчас, попытки четкого осмысливания к изысканиям наиболее обоснованных оптимальных решений и тем более попытки построения оптимальных систем были беспредметными. Сейчас вопросы построения научно обоснованных и автоматизированных производственных процессов приобретают актуальный характер. Следовательно, повышается роль проблемы оптимума, проблемы выбора единственного наиболее рационального решения.  

Автоматизация производственных

процессов

1.1. Основы, терминология и направления АПП.

Одним из основных направлений деятельности человека является совершенствование процессов производства с целью облегчения тяжёлого физического труда и повышение эффективности процесса в целом – это направление может реализоваться через автоматизацию производственных процессов.

Итак, целью АПП является:

- повышение производительности;

- повышение качества;

- улучшений условий труда.

Цель рождает вопросы, что и как автоматизировать, целесообразность и необходимость автоматизации и др. задачи.

Как известно технологический процесс состоит из трёх основных частей:

- рабочего цикла, - основной тех. процесс;

- холостых ходов, - вспомогательных операций;

- транспортно – накопительных операций.

Основной тех. процесс тесно связан с СПИД. Рассмотрим СПИД:

С – это автоматизация рабочих и холостых ходов всех механизмов станка (авт.гл. движ., подач и вспом. операций).

П – автоматизация установки, фиксации деталей на станке.И – требования АПП к инструменту.

Д – технологические требования АПП к детали. Кроме того,

Вспомогательных операций – это автоматизация загрузки, разгрузки, установки, ориентации, фиксации, транспортировки, накоплению и контролю детали. Из всего выше сказанного видно, что АПП имеет комплексный подход и, не

решив одну задачу, можем не достигнуть необходимого эффекта. Автоматизация – направление развития производства, характеризуемое ос-

вобождением человека не только от мускульных усилий, для выполнения тех или иных движений, но и от оперативного управления механизмами выполняющими эти движения.

Автоматизация может быть частичной или полной.

Частичная автоматизация – автоматизация части операции по управлению производственным процессом при условии, что остальная часть всех операций выполняется автоматически (управление и контроль человеком).

Примером может служить – автом. линия (АЛ), состоящая из нескольких станков автоматов и имеющих автоматическую межоперационную транспортную систему. Управление линии осуществляется одним процессором.

Полная автоматизация – характеризуется автоматическим выполнением всех функций для осуществления производственного процесса без непосредственного вмешательства человека в работу оборудования. В обязанности человека входят настройка машины или группы машин, включение и контроль.

Пример: автоматический участок или цех.

1.2. Организационно – технические особенности автоматизации.

Анализируя тенденцию и историю развития автоматизации произв. процессов, можно отметить четыре основных этапа, на которых решались различные по своей сложности задачи.

Это: 1. Автоматизация рабочего цикла создание машин автоматов и полуавтоматов.

2. Автоматизация систем машин, создание АЛ, комплексов и модулей.

3. Комплексы автоматизации производ. процессов с созданием автоматических цехов и заводов.

4. Создание гибкого автоматизированного производства с автоматизацией серийного и мелкосерийного производства, инженерного и управленческого труда.

1 На первом этапе – модернизировалось универсальное оборудование. Как известно время обработки одного изделия опр-ся по формуле:

T = t Р + tХ

Таким образом, для повышения производительности работы оборудования сокращалось время tР и tХ и совмещалось tР и tХ значит, если машина кроме рабочих ходов (tР ) могут самостоятельно выполнять холостые хода (tХ ), то она представляет собой автомат.

Необходимо учитывать, что под холостыми ходами следует понимать не только перемещение отдельных узлов станка без обработки, но и загрузку, ориентацию детали, их фиксацию. Однако, как показала практика, автоматизация универсальных станков, с точки зрения производительности имеет свои пределы, т.е. рост производительности труда составил не выше 60%. Поэтому в дальнейшем стали создавать специальные станки автоматы с применением новых принципов:

Многоинструментальные и многопозиционные автоматы применялись в поточных линиях, что явилось высшей формой первого этапа автоматизации (структурная схема см. табл.1).

Структурная схема автомата №1

Автомат (прутковый)

Двигательный

Передаточный

Исполнительный

механизм

механизм

механизим

Механизм

Механизм

Механизм

рабочих ходов

холостых ходов

управления

Продольныйсуппорт Поперечныйсуппорт1 Поперечныйсуппорт2 Поперечныйсуппорт3 Поперечныйсуппорт4 Поперечныйсуппорт5 Резьбонарезноеприспособ.

Механизмподачипрутка Механизмзажима Механизмповорота шпиндельногоблока Механизмфиксации

Распред. вал Механизмобгона Тормоза Механизмвыключения при отсутствиипрутка

2 На втором этапе – создаётся АЛ (структурная схема см. табл.2).

АЛ называется – автоматическая система машин расположенных в техноло-

гической последовательности, объединённых средствами транспортировки, управления, автоматически выполняющих комплекс операций кроме контроля и наладки.

Создание АЛ потребовало решения более сложных задач. Так одна из них – - Создание автоматической системы межстаночной транспортировки обрабатываемых деталей, с учётом неодинакового ритма работы станков (время на операции разное); а также не совпадение по времени их простоев из-за возникающих неполадок. Система межстаночной транспортировки должна включать не только транспортёры, но и автоматические магазины накопители для создания расходования межоперационных заделов, устройств управления и блокировки системы машин. При этом необходимы не только согласование между собой рабочих циклов отдельных машин, а так же транспортирующих механизмов, но и блокировок на случай всевозможных неполадок (поломки, выход размеров за пределы поля

допуска и т.п.).

На втором этапе автоматизации решается и задача: создание средств автоматизированного контроля , в том числе активного контроля с корректировкой работы станка.

Экономический эффект достигается не только повышением производительности и значительным сокращением затрат ручного труда благодаря автоматизации межстаночной транспортировки, контроля, уборки стружки.

Структурная схема АЛ табл. №2

3 Третьим этапом автоматизации явл-ся комплексная автоматизация производственных процессов – создание автоматических цехов и заводов.

Автоматич. цехом или заводом называется цех или завод, в котором основные производственные процессы осуществляются на АЛ.

Здесь решаются задачи автоматизации межлинейной и межцеховой транспортировки, складирования, уборки и переработки стружки, диспетчерского контроля и управления производством (структура автом. цеха см. схему, рис.3).

Структура автоматического цеха табл. №3

Автомтатический

Автоматические

Системынелинейного

транспорта

управления

А. линия 1 А. линия 2

А. линия i- 1 А. линия i

Элеваторы

Транспортёр

Дозаторы

СУ запасн. деталями

СУ аварийной блокировки

СУ подсчёта продукции диспетчеров

Здесь элементами выполняющие рабочие ходы, являются уже АЛ со своими технологическими роторными машинами, механизмами транспортировки, управления и т.д.

В автом. цехах и заводах межлинейное транспортирование и накопление заделов являются холостыми ходами.

Система управления цеха также выполняет новые более сложные задачи. Важнейшей особенностью комплексной автоматизации производственных процессов как нового этапа технического прогресса явл-ся широкое применение вычислительной техники, которая позволяет решать не только задачу управления

производством, но и гибкого управления тех. процессами.

4 Гибкие автоматизированные системы – какчетвёртый этап автоматизации представляют собой наивысшую четвёртую ступень развития автоматизации тех. процессов. Предназначены для автоматизации тех. процессов со сменным объектом производства, в том числе для единичного и мелкосерийного производства.

Гибкое производство – сложное понятие, включающее в себя целый комплекс компонентов +машинная гибкость – лёгкость перестройки технологических элементов ГАП для производства заданного множества типов деталей.

Гибкость процесса – способность производить заданное множество типов деталей, в том числе из различных деталей, разными способами.

Гибкость по продукту – способность быстрого и экономичного переключения на производство нового продукта.

+ Маршрутная гибкость – способность продолжать обработку заданного множества типов деталей при отказах отдельных технологических элементов ГАП.

Гибкость по объёму – способность ГАП экономически выгодно работать при различных объёмах производства.

Гибкость по расширению – возможность расширения ГАП за счёт введения новых технологических элементов.

Гибкость работы – возможность изменения порядка операции для каждого из типов в детали.

Гибкость по продукции – всё разнообразие изделий, которое способно производить ГАП.

Определяющими явл-ся машинная и маршрутная гибкость. Использование ГАП даёт непосредственный экономический эффект за счёт

высвобождения персонала и увеличения сменности работы и управляющего оборудования.

Обычно в первую смену производится загрузка заготовок, материалов, инструмента, тех заданий, СУ и т.д., это выполняется с участием людей. Вторую и третью смену ГАП работает самостоятельно под наблюдением диспетчера.

Лекция №2

1.3. Технико-экономические особенности автоматизации.

При анализе производства бывает не достаточно знать, на какой стадии механизации или автоматизации находится тот или иной технологический процесс. И тогда степень автоматиз. или механизации (С) определяется уровнем мех.(М) и автом.(А). Оценка уровня М и А осуществляется тремя основными показателями:

- степенью охвата рабочих мех. трудом (С);

- уровнем мех. труда в общих трудозатратах (У Т );

- уровнем мех. и авт. производств. Процессов (У П ). Для мех. обработки и сборки эти показатели:

У Т=

∑ PA k

У П=

∑ РО К П М

∑ РО К П М+ Р(1 −

УТ

Процент возрастания производительности труда за счёт его мех. или автоматизации:

(100 − У Т 2 ) (100− У П 1 ) 100

П М (А )=

− 100

(100 − У Т 1 ) (100− У П 2 )

где - индекс 1 соответствует показателям, полученным до проведения мех. и автом.;

Индекс 2 после их проведения; РА – число рабочих, выполняющих работу с использованием средств автом.;

РО – общее число рабочих на рассматриваемом участке, цехе;

к – коэффициент механизации, выражающий отношение времени мех. труда

к общим затратам времени на данном рабочем времени.

П – коэф. производительности оборудования, характеризующий отношение трудоёмкости изготовления дет. на универсальном оборуд. с наименьшей производительностью, принятым за базу трудоёмкости изготовления этой детали на действующем оборудовании;

М – коэф. Обслуживания, зависящий от количества единиц оборудования, обслуживаемого одним рабочим (при обслуживании оборудования несколькими рабочими М< 1).

Система трёх основных показателей уровня мех. и автом. производственных процессов позволяет:

- оценивать состояние автом. производства, вскрывать резервы для повышения производительности труда;

- сравнивать уровни М. и А. родственных производств и отраслей;

- сравнивать уровни М. и А. соответствующих объектов по периодам внедрения и тем самым определять направления дальнейшего совершенствования производственных процессов;

- планировать уровень автоматизации.

Наряду с выше приведенными показателями может применяться критерий уровня автоматизации производства, количественно характеризующий, в какой мере на данной стадии М. и А. используются возможности экономии затрат труда, т.е. роста произв. труда:

∆ t ЧА

100 =

t ПМ− t ЧА

∆ t ПА

t ПМ− t ПА

где tПМ – трудоёмкость изготовления изделия при полной (комплексной) механизации;

tЧА и tПА – трудоёмкость изготовления при частичной и полной автом.

1.4. Технологичность деталей для автоматизированного производства.

1.4.1. Особенности конструирования изделий в условиях автоматизации про-

изводства.

Конструкция изделия должна обеспечивать его технологичность в изготовлении и сборке. Применение средств автоматизации предусматривает повышенное внимание конструкции изделий с точки зрения облегчения ориентации, позиционирования, сопрягаемости при сборке.

Большинство средств автом. для транспортировки и ориентации деталей действуют на ощупь, т.е. они используют геометрические характеристики деталей для осуществления ориентации и позиционирования.

Учитывая это, можно сказать, что выбор того или иного средства автом. будет основано на анализе классификации объектов производства по геометрическим параметрам (по их назначению и их относительной величине).

Одной из геометрических характеристик явл-ся симметрия.

В некоторых случаях симметрия деталей способствует автоматизации, а в других – делает её невозможной. Пример рис. А1, все детали расположенные справа – симметричны, что делает ориентирование ненужным; рис. А2 – иллюстрирует другую проблему. Если конструктивные особенности каждой детали трудно обнаружить мех. способом, то решение проблемы состоит в нарушении симметрии.

Детали типа цилиндров и дисков явл-ся наиболее вероятными кандидатами на внесение черт ассимметрии, потому что без ориентирующих признаков они могут принимать неопределённое число положений.

Детали прямоугольгой формы обычно выигрывают от симметрии поскольку они могут иметь небольшое число положений.

Рис А1 Ориентация деталей за счётсимметричности.

Рис А2 Ориентация деталей за счётих ассимметричности. а) затруднена б) улучшена

При этом закон распределения суммы этих случайных величин будет иметь Гаусово или нормальное распределение – рис. А5.

Взаимное сцепление деталей (рис. 3)

При загрузке деталей в накопитель или другое устройство навалом, нередко возникает явление сцепления деталей. Типичный пример – пружины . Многие детали имеют отверстия и выступы функционально не связанные друг с другом и не предназначенные для сопряжения. Соотношение размеров этих элементов деталей должно исключать возможность попадания выступа в отверстие и сцепления деталей. (рис. А3).