Проблемы цифровых технологий в машиностроении. Цифровое производство: с чего начать? Экспертное мнение. Что такое цифровое производство

На сегодняшний момент практически на всех предприятиях Тамбова и Тамбовской области прошло перевооружение по линии станков с числовым программным управлением для металлообработки. Это требует совершенно нового подхода для подготовки специалистов, которые работают на этих станках, создают проектно-конструкторскую документацию и обслуживают их. Именно поэтому в Тамбовском государственном техническом университете открыли Центр коллективного пользования «Цифровое машиностроение». Он оснащен самым современным программным обеспечением, станочным, сварочным и слесарным оборудованием фирм, являющихся мировыми лидерами в этой сфере – Siemens и DMG MORI.

DMG MORI – мировой инновационный лидер в области металлообработки с применением передовых технологий для 5-осевой фрезерной обработки и для 6-сторонней комплексной обработки на токарных и фрезерных станках. Кроме этого, DMG MORI является первой компанией по производству металлообрабатывающего оборудования, официально получившей статус российского производителя. Данный статус позволил концерну укрепить свои позиции на российском рынке.

После открытия Центра коллективного пользования мы встретились с генеральным директором ООО «ДМГ МОРИ Рус» Андреем Александровичем Соколовым и обсудили с ним перспективы работы ЦКП, инновационные разработки и технологии в сфере цифрового производства и планы по дальнейшему сотрудничеству с ТГТУ.

– В рамках индустрии 4.0 крупные промышленники, эксперты в области искусственного интеллекта, экономисты и академики предусматривают совершенно иной подход к производству. Андрей Александрович, расскажите, как это реализуется с точки зрения DMG MORI .

– Мы начали этот путь в 2009 году и создали интерфейс, который называется CELOS. Этот интерфейс позволяет управлять, налаживать, снимать данные с оборудования, иными словами является опцией нашего оборудования. С 2009 мы его совершенствуем, развиваем, продаем, и на сегодняшний день в мире осуществлено около 25 тысяч внедрений. Индустрия 4.0 – это следующий этап мирового развития. Именно мирового, и DMG MORI занимает в этом процессе лишь свою нишу. В рамках развития Индустрии 4.0 мы видим острую необходимость в нашем оборудовании, потому что на сегодняшний день всё оборудование работает на технологических пределах инструмента, то есть быстродействие системы находится на пике возможностей компьютеров. Соответственно, чтобы дальше расти и повышать свою конкурентоспособность нужно что-то новое. Индустрия 4.0 – это как раз то «новое», которое уменьшает время наладки, уменьшает время простоя, повышает эффективность, экономит ресурс человеческий, материальный, абсолютно все ресурсы. Именно 4.0 на сегодняшний момент требует внимания ко всем аспектам деятельности.

– Передовые тренды, инновационные разработки и технологии в сфере цифрового производства, автоматизация и аддитивное производство – всё это иллюстрирует превосходство технологий DMG MORI . Как Вы думаете, можно сказать, что цифровизация «захватывает» мир? Или это уже произошло?

– Да, я считаю, что это уже произошло. Говоря об Индустрии 4.0, мы изначально предполагаем, что цифровизация – один из самых значимых процессов.

– Какие Вы видите перспективы в рамках партнерского взаимодействия с Тамбовским государственным техническим университетом?

– Мы подписали в феврале этого года с Тамбовским государственным техническим университетом соглашение о стратегическом партнерстве в рамках развития компетенций машиностроения и рабочих специальностей.

Мы со своей стороны работаем с промышленными предприятиями Тамбова и Тамбовской области, все те представители производства, присутствующие на открытии Центра коллективного пользования «Цифровое машиностроение» в ТГТУ являются нашими потенциальными и действующими клиентами, хочу отметить, что действующих больше, чем потенциальных. С ними проводится работа в части создания запроса на квалифицированные кадры. Для себя я отмечаю это как ключевой момент. Оперирую именно этим аргументом в решении многих вопросов, ведь от квалифицированного персонала зависит иногда даже больше, чем всё.

– Предполагается ли в дальнейшем рассмотрение вопросов целевой подготовки кадров, совместное с ТГТУ проведение исследований, проведение научно-технических мероприятий?

– Вместе с Тамбовским государственным техническим университетом наше сотрудничество мне бы очень хотелось выстроить в части развития фрезерных компетенций, которые на данный момент в ТГТУ не представлены. Мы эту работу уже сейчас ведем, и я надеюсь, что к концу этого и началу следующего года будут осуществлены определенные шаги. Почему? В Тамбове очень много предприятий, занимающихся изготовлением корпусных изделий. Корпусные изделия требуют именно фрезерной обработки, соответственно развитие этих компетенций в ТГТУ будет очень значимым, поскольку непременно будет востребовано на рынке труда. Именно поэтому основная задача сейчас привлечь в ТГТУ заказы на квалифицированные кадры и на новую технику, этим мы сейчас и занимаемся.

– В ТГТУ открылся уникальный центр коллективного пользования «Цифровое машиностроение». Открытие ЦКП позволит изучать передовые технологии в области машиностроения, металлообработки и цифрового проектирования, проводить научные и опытно-конструкторские работы с помощью высокоточного новейшего оборудования. Есть ли подобные центры с таким оборудованием в других городах, в других вузах? Распространено ли это?

– Такие ЦКП есть и в других вузах, почти во всех регионах России нами открыты подобные центры. Они в разной степени оснащенности, в разной степени эксплуатации. За круглым столом, после открытия ЦКП в университете, обсуждался очень интересный момент, и представители Siemens это подтверждают, что очень часто маленькие центры используют оборудование очень эффективно, в то время как большие центры – нет. Я тоже с этим согласен, поскольку вижу десятки наших станков, наши системы, которые не эксплуатируются. Я уверен, что путь, выбранный ТГТУ однозначно правильный, поскольку вы идёте маленькими, но очень уверенными шагами. С той точки зрения, что у вас намного больше шансов эффективно загрузить, научиться эксплуатировать одну или несколько единиц оборудования, а затем овладеть процессом в совершенстве, обучить. Я не знаком лично с молодыми ребятами, которые были на открытии ЦКП, но очень приятно видеть, что помимо поддержки руководства, есть и инициатива, заинтересованность молодых ученых. Вот такие молодые люди, говорю это, опираясь на личный опыт, продвигают Центры коллективного пользования. Именно передача знаний, внедрение новых технологий, новая продукция, требует того, чтобы ученые были умны, смелы и настойчивы. У ТГТУ есть все факторы для успеха.

В статье обсуждаются вопросы модернизации отечественного высокотехнологичного машиностроения на основе методов моделирования и прогнозирования развития цифровых производств. Прогноз развития цифровых производств основан на разработке комплексных дорожных карт. Построение дорожных карт включает определение ресурсного, информационного и организационно-методического обеспечения. Результатом работы является выделение перечня критических информационных и производственных технологий с целью существенного повышения производительности труда в машиностроении

Ключевые слова: цифровое производство, дорожная карта, производственные технологии, моделирование производства

Список использованных источников

1 Григорьев С.Н., Кутин А.А., Долгов В.А. Принципы построения цифровых производств в машиностроении. Вестник МГТУ «Станкин», 2014, № 4 (31), с. 10-15.

2 Григорьев С. Н., Кутин А. А. Создание цифровых производств эффективный путь повышения производительности труда в машиностроении. Технология Машиностроения, 2015, № 8 с. 59-63.

3 Григорьев С. Н., Кутин А. А. Инновационное развитие высокотехнологичных процессов на основе интегрированных АСТПП. Автоматизация и современные технологии, №11, 2011,с. 23-29.

4 Вороненко В. П., Михайлов Е. В., Соколова Я. В. Применение имитационного моделирования при проектировании или реконструкции производственных участков. Вестник МГТУ «Станкин», 2015, № 3 (34), с. 29-33.

5 Вороненко В. П., Долгов В. А. Информационная модель базового производственно- технологического решения для адаптации технологического процесса к текущему состоянию системы предприятия. Вестник МГТУ «Станкин», 2011, № 3, с. 173-177.

6 Еленева Ю. Я., Карпов С. А., Лукашевич Е. В. Управление финансированием инновационного развития промышленных предприятий: концептуальная модель. Вестник МГТУ «Станкин», 2012, № 1 т. 2, с. 128-133.

7 Григорьев С. Н. Решение задач технологического перевооружения машиностроения//Вестник МГТУ Станкин. 2008. № 3. С. 5-9.

8 Асанов Р. Э., Косов М. Г., Кузнецов А. П. Оценка технического уровня мехатронных изделий. Вестник МГТУ «Станкин», 2013, № 1 (24), с. 60-65.

9 Мартинов Г. М., Мартинова Л. И. Формирование базовой вычислительной платформы чпу для построения специализированных систем управления. Вестник МГТУ «Станкин», 2014, № 1 (28), с. 92-97.

10 Соколов А. В., Чулок А. А. Долгосрочный прогноз научно-технологического развития России на период до 2030 года: ключевые особенности и первые результаты. Форсайт, 2012, Т. 6, № 1, с. 12-25.

11 Позднеев Б. М., Сутягин М. В., Куприяненко И. А., Тихомирова В. Д., Левченко А. Н. Новые горизонты стандартизации в эпоху цифрового обучения и производства//Вестник МГТУ «СТАНКИН». - 2015. - №4 (35). - С. 101-108.

12. Ковалев А. П., Коршунова Е. Д. Социально-управленческий и стратегический анализ конкурентоспособного современного российского предприятия//Вестник МГТУ «Станкин». - 2012. № 2 (21). С. 18-22.

Цифровое предприятие, виртуальная фабрика, Индустрия 4.0, умное месторождение, безлюдное производство, безлюдный склад, аддитивные технологии – сегодня эти понятия постоянно на слуху. Но насколько хорошо в них ориентируются российские производители? Для отечественной производственной среды эти термины еще достаточно новы, и размытость формулировок и неясность понятий способны увести в ложном направлении.

Сегодня под «цифровым производством» понимается, прежде всего, использование технологий цифрового моделирования и проектирования как самих продуктов и изделий, так и производственных процессов на всем протяжении жизненного цикла. По сути, речь идет о создании цифровых двойников продукта и процессов его производства. Изменения в современной промышленности (часть из них уже происходит сейчас), которые «цифровое производство» подразумевает, будут происходить по следующему направлению — Цифровое моделирование – развитие получает концепция цифрового двойника, то есть изготовление изделия в виртуальной модели, включающей в себя оборудование, производственный процесс и персонал предприятия.

Основная задача

Совершенно очевидно, что облачные технологии, аддитивное производство и дополнительная реальность будут также влиять на развитие цифрового производства. Основные изменения будут происходить именно благодаря этим перечисленным технологиям.

Одна из основных задач цифрового производства: массовое производство продукции по индивидуальным заказам. Для этого на предприятии должны быть полностью автоматизированы все производственные процессы: конструкторская разработка, технологическая подготовка производства, снабжение материалами и комплектующими, планирование производства, изготовление продукции и сбыт. Необходимым условием при этом является создание на промышленном предприятии единого информационного пространства, с помощью которого все автоматизированные системы управления предприятием, а также промышленное оборудование могут оперативно и своевременно обмениваться информацией

Заключение

Мы считаем Россию неотъемлемой частью глобальной экономики и полноправным участником цивилизационного прогресса. Дигитализацию нельзя навязать со стороны, главным стимулом является желание наших промышленников укрепить конкурентоспособность своих производств в обозримой перспективе.

Цифровые технологии улучшают принципы бережливого производства

Мирко Баекер (Mirko Baecker)

Введение

Технологии бережливого производства изменили подход многих ведущих предприятий к задаче выявления и устранения отходов в сложной технологической среде, что, в свою очередь, привело к оптимизации работы и сокращению сроков изготовления изделий.

Процессы и методики бережливого производства дают компаниям существенные конкурентные преимущества, обеспечивая достижение заданных показателей себестоимости и прибыли для более чем 80% изделий (данные исследования Aberdeen Group).

Однако современные экономические, демографические и конкурентные условия создают немало сложностей для машиностроителей. Это сказывается не только на бюджетах, но и на покупательском поведении и ожиданиях потребителей. Отмечается значительное смещение спроса на продукцию машиностроения, что влияет на весь жизненный цикл изделий.

Сегодня успех для многих компаний определяется качеством и скоростью принятия решений. Во всё расширяющейся вселенной данных об изделии, поступающих из различных источников и относящихся к разным областям знаний, критически важным становится рациональное использование такого массива информации.

В результате многие предприятия изучают способы применения методик и технологий цифрового производства для бережливого планирования, с которого и начинается бережливое производство.

Задачи

В настоящее время глобальная экономическая нестабильность оказывает постоянное давление на машиностроителей. Ее влияние распространяется на кредиты, инвестиции, а также потребительский спрос и во всех секторах уже вызвало резкое падение прибыли.

Указанные проблемы приводят к нехватке инвестиций, замораживанию бюджетов, сокращению штатов и закрытию заводов, а также к предпочтению краткосрочных проектов, дающих быструю отдачу.

Еще один аспект стратегий бережливого производства в условиях резкого экономического спада состоит в том, что большая часть принимаемых решений оказывается лишь мерой противодействия кризису. Однако в долгосрочной перспективе они увеличивают объем потерь в технологической системе, особенно если приходится переносить производство из-за закрытия предприятия или происходит потеря интеллектуальной собственности из-за увольнений.

В итоге некоторые производители начали сомневаться в ценности бережливого производства. Например, в краткосрочных циклах стоимость оптимизации и устранения отходов может превышать достигаемую экономию, поэтому данный поход требует пересмотра.

С этим обстоятельством связан и вопрос обоснованности применения определенных процессов. Например, стоит ли использовать в современных производственных условиях процессы, разработанные многие годы назад? Грег Филдс (Greg Fields), президент консалтинговой фирмы Bridgewright Management Consultants, считает, что никакое непрерывное улучшение не приведет компанию к успеху, если приходится заниматься переделкой систем, создававшихся и предназначавшихся для работы в совершенно других условиях. Поэтому необходимо рассматривать новые методы, отвечающие современному состоянию экономики.

На процессы бережливого производства налагается ряд ограничений, однако вместе с принципами цифрового производства они не только сохраняют актуальность, но и обеспечивают более глубокую оптимизацию всего процесса управления жизненным циклом изделия.

Плюсы и минусы бережливого производства

Бережливое производство может дать массу преимуществ, в том числе увеличение объемов выпуска продукции и эффективности, сокращение переделок, рост общей производительности и качества изделий, производительности труда и энтузиазма персонала. Оно может сократить потери при транспортировке, инвентаризации, перепроизводстве и браке, а также поможет избежать ненужных перемещений оборудования или персонала, ожидания следующих этапов производства.

При внедрении инициатив бережливости основное внимание уделяется производственному процессу, однако и в других сферах существуют препятствия в достижении результатов, которые обещает данный подход. Одна из них — обучение, но данный вопрос может решить только сама организация. Кроме того, можно отметить резкий рост расходов при перемещении или замене оборудования.

Tecnomatix— решение для автоматизированной подготовки производства, позволяющее предприятиям быстро находить наилучшие стратегии повышения производительности и снижения себестоимости продукции

Процессы бережливого производства основываются на непрерывном улучшении. Это требует наличия соответствующих механизмов, которые фиксируют производственные знания для их передачи на этап разработки, что и реализует стратегию непрерывного улучшения.

В результате все усилия концентрируются на отходах и потерях в существующем производстве. Традиционные стратегии бережливого производства относятся к оптимизации существующих технологических систем, поэтому многие компании не считают, что бережливое производство тесно связано с принципами цифрового производства, и упускают массу интересных возможностей. Например, процессы бережливого производства обычно предполагают изготовление реальных опытных образцов и макетов, которые, в лучшем случае, подвергаются лишь постепенному анализу функциональности. Иными словами, полностью оценить последствия сложных изменений в технологической системе крайне сложно. Однако при использовании совместно с технологиями цифрового производства потребность в реальных опытных образцах сокращается благодаря наличию единой платформы разработки.

Цифровое производство

Цифровое производство — это способ предоставить инженерам компании средства для планирования, разработки, численного моделирования и передачи технологических процессов, реализованные в виде комплекта программ для поддержки конструкторско-технологической подготовки производства.

Данная технология представляет собой интегрированную компьютерную систему, включающую средства численного моделирования, 3D-визуализации, анализа и совместной работы, предназначенные для одновременной разработки изделий и технологических процессов их изготовления.

Указанные средства позволяют создавать цифровые модели изделий и виртуальных заводов для оптимизации технологических процессов до того, как средства будут вложены в реальное производство. Среда проектирования обеспечивает создание подробных технологических инструкций и управляющих программ для автоматизированного оборудования, а также оценку общей производительности и численное моделирование материальных потоков. Все эти процессы могут выполняться параллельно с конструированием изделия, что сокращает сроки запуска производства, повышает качество и снижает себестоимость.

Благодаря расширению совместной работы данные технологии помогают достичь лучших результатов при внедрении стратегий бережливого производства в существующую технологическую среду на всех этапах процесса разработки.

Технологии цифрового производства позволяют уже в ходе планирования просчитывать и сокращать расходы, использовать ранее накопленный опыт и оптимизировать стоимость материалов.

На этапе контроля проектных решений инструменты цифрового производства позволяют визуализировать потоки изделий, провести балансировку загрузки оборудования, построить графические схемы процессов и проанализировать основное и вспомогательное время, тем самым сокращая число изменений, вносимых на поздних этапах, и устраняя потребность в реальных опытных образцах.

В производстве можно достичь повышения прибыльности благодаря сокращению отходов, оптимизации систем, повышению безопасности и производительности труда, внедрению передового опыта и уменьшению перемещений материалов.

В цифровом производстве предусмотрены средства и методики для поддержки принципов бережливого производства путем прогнозирования и анализа потребностей и эффективности настройки производственных линий. Применяя данные средства в условиях совместной работы, инженеры-технологи могут выявлять узкие места и неэффективные процессы, а также разрабатывать корректирующее воздействие, устраняя тем самым отходы и потери и активно реализуя принципы бережливого производства.

Заключение

Бережливое производство — это философия, дающая проверенные на практике преимущества для бизнеса. Компании, реализующие инициативы в области бережливого производства, теперь получили возможность повысить производительность работы даже в условиях роста себестоимости и сложности изделий. В частности, поддержка бережливого производства означает реализацию данных концепций на ранних этапах жизненного цикла, что лучше всего сделать при помощи технологий цифрового производства. Это позволяет разрабатывать и внедрять оптимальные технологические процессы и выполнять их численное моделированием для контроля конструкторских и технологических проектных решений. В итоге таким компаниям удается гармонизировать технологические требования с конструкцией самого изделия, что повышает эффективность производства и устраняет необходимость внесения изменений в готовые проекты по соображениям технологичности.

Наличие сквозного решения, которое объединяет принципы бережливого и цифрового производства, обеспечивает полную прослеживаемость всех этапов подготовки производства. Такой подход объединяет работу всех сотрудников предприятия — от инженеров, изготавливающих макеты, и специалистов, занимающихся «начинкой» изделий, до отдела закупок и даже до рабочих в цехах.

15 технологий, которые надо реализовать российским заводам как можно быстрее, если они нацелены опередить иностранные предприятия в гонке конкурентоспособности четвертой промышленной революции.

Как российским производствам подготовиться к новому технологическому укладу? Что именно позволяет иностранным компаниям производить промышленное оборудование качественнее, быстрее, дешевле?

В течение последних 10 лет мы с командой, реализуя крупные промышленные проекты, отвечали на эти вопросы, работая в семи странах мира (Великобритания, США, Германия, Япония, Италия, Украина, Россия) на десятках международных машиностроительных предприятиях. Благодаря этой работе, мы провели детальный анализ подходов и технологий для обеспечения высокой степени конкурентоспособности современного международного производственного предприятия.

Вот 15 технологий, которые необходимо реализовать российским заводам как можно быстрее, если они хотят догнать и перегнать иностранные предприятия в гонке конкурентоспособности четвертой промышленной революции.

1. Системы управления информацией предприятий , Enterprise Information Management: EIM = PLM+MES+ERP. Именно в такой связке, с взаимной передачей данных они работают в международных компаниях с 90-х годов прошлого века, образуя централизованный цифровой информационный хаб, используемый на всех стадиях жизненного цикла производственного проекта: для цифрового конструирования, в цифровом цеху, в цифровой цепи поставок, логистике и цифровой адаптации под потребителя продукта при продажах и сервисном обслуживании. В последнее время как один из важных компонентов EIM, активно развиваются системы класса MDC – Manufacturing Data Collection российских производителей, обеспечивающие мониторинг средств производства с числовым программным управлением и сбор данных о загруженности станков. Накапливать, упорядочивать и управлять информацией на всех этапах жизненного цикла изделий сегодня еще важно и для постепенного перехода через машинное обучение (machine learning) к полностью автоматическому производству.


Сегодня в России ежегодно создаются новые цифровые производства

2. Конвергенция цифрового и физического в разрабатываемом продукте уже в эскизном проекте - но сначала необходимо навести порядок в хранении конструкторской и технологической документации, реализовав компонент 1. Уже сегодня ведущие производители на этапе конструирования механического оборудования продумывают и закладывают в конструкцию выпускаемого продукта способы его взаимодействия через защищенный промышленный интернет вещей с цифровыми системами управления.

3. Систематизация, накопление и защита нематериальных активов (НМА) и интеллектуальной собственности. Не обязательно в форме патентов, обязательно в форме секретов производства и ноу-хау. Не забывайте интегрировать НМА в хозяйственную деятельность компании, фиксируя их оценку в бухгалтерском балансе. Здесь все просто: одним из основных выгодоприобретателей четвертой промышленной революции является собственник и поставщик интеллектуального капитала. Если вы развиваетесь как производитель и не оформляете свою интеллектуальную собственность, вы лишаете себя этих выгод. Сегодня лидирующие компании и государства борются за построение конкурентной экономики знаний (knowledge economics) с основой в виде производства интеллектуальных продуктов - технологий, патентов, ноу-хау. Обеспечивая интеграцию в хозяйственную деятельность нематериальных активов, российские компании могут быть глобальными промышленными гигантами, даже не имея собственных заводов.

4. Цифровой реверс-инжиниринг . В качестве одной из наиболее успешных бизнес-стратегий международной экспансии машиностроительной компании сегодня на практике подтверждено развитие собственного сервисного центра за рубежом. Сервисная база или ремонтное предприятие создается рядом с потребителем, обученный персонал такой базы помогает ремонтировать изношенное оборудование потребителя через сканирование деталей и передает полученные в результате сканирования 3D модели к себе на домашнее предприятие для производства. В результате базы данных PDM систем международных глобальных производителей наполняются существующими составами изделий и конфигурациями работающего оборудования для последующего расширения производственных линеек этих глобальных компаний.

5. Инженерный анализ (CAE) как отдельное бизнес-направление, виртуальное прототипирование, численный виртуальный эксперимент, FEA и CFD. Цифровое моделирование работы выпускаемого вами оборудования также очень сильно влияет на сроки разработки и выпуска продукта. Различные способы моделирования – от физических процессов и отдельных сборочных единиц до технологических процессов и производства в целом широко используются во всех ведущих производственных предприятиях сегодня, обеспечивая их отраслевое лидерство . Очень хорошо по этому поводу высказался вице-президент Тесла по производству: «современное производство – это интеллектуальная машина, производящая другие машины. Вы должны собрать все данные завода. Вам необходимо понять процессы и как вы можете их улучшить. Когда у вас будет достаточно информации, будет несложно смоделировать все предприятие от начала до конца и понять ключевые точки воздействия и настройки завода» .

6. Цифровые двойники (полная информационная модель) выпускаемого продукта, продвижение и продажи через виртуальную реальность (VR) и сервиса с помощью дополненной реальности (AR). Зайдите на сайт Caterpillar. Видите продуктовую линейку? Чтобы показать, как работает это оборудование, презентовать и продать его шейхам, CAT больше не везет грейдер в OAЭ. CAT передает 3D модель грейдера в свое представительство и те показывают в очках виртуальной реальности в VR эту модель потенциальному покупателю. Оцените экономию на логистике. С помощью AR сервис-инженеры CAT, обслуживающие на базе математической модели с предиктивной аналитикой тот же грейдер, могут осуществлять «точечный» ремонт в полном соответствии со всеми инструкциями и актуальным состоянием именно запросившего обслуживание грейдера. Оцените перспективы сервиса как бизнеса для САТ.

7. Энергоэффективность предприятий , сертификация их по стандартам LEED, BREEAM и сокращение эксплуатационных затрат на 25% и более. Это непосредственно влияет на себестоимость продукции этих предприятий и снижает риски энергозависимости предприятий, риски изменения законодательства и др.

8. Трансфер технологий. Если вы оснастили свое нефтяное месторождение комплексом иностранного промышленного оборудования, сразу же начинайте думать о его производстве здесь. Даже не так. Запланировав приобретение значительного объема иностранного оборудования для оснащения вашего нефтяного месторождения, сразу планируйте и реализуйте трансфер технологий производства этого оборудования в России. Иначе в ходе эксплуатации этого оборудования вы быстро разоритесь на его сервисе (от 100 евро в час - стоимость европейского инженера), а через пять лет обнаружите себя собственником устаревшего хлама. Причем ваши соседи по отрасли, закупив через пять лет относительно вас у той же компании похожее оборудование, станут собственниками машин на пять поколений старше и эффективнее вашего, поскольку обновление продуктовой линейки раз в год - реальная практика современного международного машиностроителя. С ускоренным развитием технологий цифрового производства и сокращением сроков выпуска продукции ТРАНСФЕР ТЕХНОЛОГИЙ сегодня стал единственной возможностью выживания даже не производителя, а заказчика и эксплуатанта оборудования. При этом предприятия, сформировавшие объёмы интеллектуальных активов в PDM системах, могут начинать задумываться об их капитализации, включая трансфер (экспорт) технологий в развивающиеся страны и продажу лицензий на нематериальные активы (ноу-хау и интеллектуальную собственность).

9. Аддитивное производство для модельных испытаний и прототипирования. У вас еще нет 3D принтера или партнеров-студии 3D печати? Тогда - смотрите компонент 5 о цифровом моделировании - вы не сможете быть такими же быстрыми в разработке и выпуске новых продуктов, как международные производители.

10. Профессиональное управление проектами. Для обеспечения поставки сложных видов оборудования в срок, с запланированным финансовым результатом и с требуемым заказчиком качеством, ведущие производственные предприятия создают корпоративные системы управления проектами, обращаясь к лучшим практикам современного управления проектами и комбинируя Agile и Waterfall подходы к реализации проектов.

11. Бережливое производство (lean) во всех его проявлениях и порядок в цехах с разработкой и внедрением сильной производственной системы. Огромное количество цехов в России – не отвечающие экологическим стандартам, неухоженные помещения с хаотично накиданным инструментом на верстаках под слоем стружки. Неужели кто-то думает, что в таких условиях возможно произвести конкурентоспособный продукт? Оптимизация планировки цеха, стандартизация производственного процесса, повышение эффективности работы оборудования – важные слагаемые роста производительности труда современного завода.

12. Выход подсистем системы управления информацией предприятий (PDM, MES, MDC) на автоматизированные рабочие места (АРМ) производственных участков. За 10 лет выросло поколение, для которых дисплей привычнее листа бумаги. Молодые слесари-сборщики будут эффективно работать с цифровым интерфейсом состава изделия на АРМ сборочных участков, пользуясь интерактивными электронными техническими руководствами. Операторы станков ЧПУ эффективно используют цифровые ассистенты выполняемых технологических процессов, включающих базы знаний нормативно-справочной информации. Управление производственными процессами, анализ их узких мест и ограничений, принятие управленческих решений на основе этого анализа начальник цеха ведет из главной диспетчерской, пульта управления производством, оборудованной дисплеем, на который поступают видеосигналы со всех производственных участков и информация об их производительности (пример – цех «Высота 239» ЧТПЗ).

13. Учебные производственные центры на вашем предприятии и развитие фаблаба в регионе работы предприятия. Популяризация цифрового производства через проведение мастерских с рассказом о работе современных инженеров, 3D печати, робототехники. Участие молодых цеховых специалистов в WorldSkills, EuroSkills. Европейское предприятие, открывшее завод в России, имеет несколько таких центров, оборудованных образцами продукции для проведения тренингов персонала и партнеров компании.

14. Цифровое управление логистикой , в том числе с использованием RFID индентификации, с контролем передвижения сырья и материалов, очень важно для обеспечения конкурентоспособности производства сегодня. Максимальная автоматизация управления складскими запасами, цифровые системы отбора материальных запасов со световой индикацией (умные полки, pick-by-light), когда информация по заданию на подбор материалов высвечивается на интегрированном в полку дисплее, при подключении к MES, на продвинутых производствах с умными командами на порядок увеличивают производительность при пропорциональном уменьшении затрат на логистику .

15. Кросс-отраслевая кооперация , взаимодействие с партнёрами в профессиональных ассоциациях, проведение аудита качества других компаний для организации технологического партнерства.

Активизация обмена ресурсами, возможностями и потребностями в том числе через уже существующие онлайн-инструменты. Использование эффекта платформы, когда цифровые производители создают сети, соединяющие продавцов и покупателей, повышая доходы за счет эффекта масштаба . Пример – кооперация компаний Hewlett-Packard, National Instruments, PTC и Flowserve , которые объединились для совместного выпуска насосных агрегатов, управляемых и обслуживаемых с помощью технологий промышленного интернета вещей и предиктивной аналитики. Российский пример – кооперация Yandex Data Factory и Магнитогорского металлургического комбината, создавших с помощью алгоритмов машинного обучения математическую модель производства стали для оптимизации расхода ферросплавов и добавочных материалов .

Почему сегодня так важно опираться на эти работающие производственные технологии в гонке конкурентоспособности четвертой промышленной революции?

Давайте посмотрим на произошедшее в последние годы. В продукте и в средствах производства доказала свою эффективность радикальная конвергенция цифрового и физического. В разработке – если предприятие не выпускает новую модель продукта ежегодно в условиях быстрого и тесного цифрового мира, оно проигрывает конкурентам. В производстве – увеличились эффективные возможности для безлюдного производства, поэтому цеховой персонал постепенно замещается операторами цифровых технологических процессов, как десять лет назад токари и фрезеровщики начали замещаться операторами станков с ЧПУ. В сервисе продукта – распространяются технологии предиктивной аналитики как серьёзной конкурентной силы и связи продукта с его разработчиком (см. пример Тесла). Да, эти технологии рождены десятки лет назад. Но любая революция – это окончательное разрушение старой технологической платформы критической массой новых технологий, эволюционно развивающихся долгие годы. Наивно было бы предполагать, что промышленная революция происходит, когда абсолютно новая технологическая платформа в миг меняет цифру 3 на 4. Лучший пример революционного продукта, полученного эволюционным путем – Тесла и, если спроецировать технологическую новизну этого продукта (и средств его производства) на другие отрасли и продукты, становится ясно, что смена технологического уклада действительно происходит.

Промышленная революция происходит через трансформацию средств производства и продукта, разрабатываемого и производимого этими инструментами. Как следствие – кардинальный рост производительности труда, скорости выпуска продукта и его качества.

О любой технологии (IoT, AR, VR, Big Data) можно сказать «мы это делали 10, 20, 30 лет назад». Но не единичные практики создают промышленную революцию, а формирование (в том числе через отраслевую кооперацию, компонент 15, и образовательные инициативы, компонент 13) системы технологий, радикально влияющей на производительность труда, скорость выпуска продукции и создающей новые виды экономической деятельности. С этой точки зрения снобистская позиция «эти технологии -ничего нового, лишь маркетинговые названия» на наступление новой промышленной революции никакого влияния не оказывает.

Что нужно сделать, чтобы современные компоненты производственных систем и технологии заработали на российских производствах?

Нам необходимо оставить технологический снобизм, перенять опыт развития восточных предприятий и их руководителей, которые как губка впитывают лучшие мировые практики. Искать и работать с такими практиками на конференциях, форумах, референс-визитах в передовые производственные компании, в общении с инженерными и производственными консультантами. В организационной структуре наших предприятий необходимо обеспечить плотное сотрудничество подразделений ИТ и НИОКР с совместными разработками новых продуктов и модернизацией существующих. Работать с вендорами и интеграторами информационных систем, в свою очередь динамично развивающимися синхронно с технологиями и предлагающими комплексные решения автоматизации всего жизненного цикла производимой продукции.